
Fast auto-parallel linear
solver For huge engineering
applications

The original SAMG is a very efficient linear

solver library based on algebraic multigrid

(AMG), specifically developed for industrial

applications. SAMG supports both serial

and multi-core computations on single PC,

workstations or compute nodes.

The new XSAMG library additionally

exploits the parallelism offered by multiple

nodes of a compute cluster by distributing

linear systems across different nodes (based

on MPI). Since this is done automatically,

the calling simulation program itself does

not have to be prepared for distributed

computing.

XSAMG makes the linear solver part of

a standard code “cluster aware” –

without re-engineering

That is, XSAMG lifts a user’s single-node

application beyond the performance limits

of a single node by making the linear solver

phase “cluster aware”, this way drastically

reducing solution times further without

the need of a user to be concerned about

the complicated underlying parallel cluster

software infrastructure.

XSAMG offers the standard way of exploit-

ing multiple cores (“multi-threading”),

plus the usage of multiple compute cluster

nodes.

XSAMG – enhanced parallelism,

enhanced flexibility

Thus, it extends over all architectural com-

ponents of a modern parallel architecture

and lets the user easily select the best

option for her / his code.

Fraunhofer Institute for Algorithms

and Scientific Computing SCAI

Schloss Birlinghoven 1

53757 Sankt Augustin

Germany

Contact:

Dr. Hans-Joachim Plum

Phone +49 2241 14-4034

samg@scai.fraunhofer.de

www.scai.fraunhofer.de

F r A u n h o F e r I n S t I t u t e F o r A l g o r I t h m S A n d S C I e n t I F I C C o m p u t I n g S C A I

2A Single-node multi-core use of

SAMG: total run time (12h)

Simulation Code
(initial phase)

Simulation Code
(final phase)

SAMG (single node) XSAMG: auto-distribution across multinode cluster

or or10:00 h 5:00 h 2:30 h 1:15 h

1:00 h 1:00 h 1:00 h 1:00 h 1:00 h

10:00 h

5 h 2:30 h 1:15 h

8 nodes4 nodes2 nodes1 node

1:00 h1 node

Simulation Code
(initial phase)

1:00 h1 node

1:00 h1 node

Simulation Code
(final phase)

1:00 h
1 node

SAMG
1 node

XSAMG
2 nodes

XSAMG
4 nodes

XSAMG
8 nodes

1:00 h

1:00 h
1:00 h

1a: single node run 1b: multiple nodes auto-parallel runs

2A 2b

Who should consider using XSAMG?

Suppose that a simulation code calls, as a

core section, a linear solver and that the

code developer already uses (or plans to

use) SAMG. Then, using XSAMG instead is

a favorable option if the following condi-

tions are met:

• The overall simulation code is limited to

single nodes (either serial or OpenMP

parallel).

• The code developer does not want to

invest the effort to make the simulation

code MPI-parallel.

• The solution of linear systems requires a

significant part of the overall simulation

time, even with the very efficient SAMG.

• The code developer and / or the customers

have access to a cluster computer.

How does it work?

XAMG is based on the following flexible

execution model: One “head” node

performs the user’s simulation tasks, the

SAMG solver is automatically spread across

additional remote nodes – the more nodes

deployed, the faster the overall execution

speed (cf. Fig 1a and 1b). Note that

XSAMG automatically exploits the paral-

lelism offered by both multiple cores and

multiple nodes, even if the user’s single-

node program does not exploit multi-core

computing at all.

What is the potential benefit?

Suppose a single-node application uses

(serial or OpenMP parallel) SAMG as a linear

solver. Just as an example, let us assume that

the complete application needs 12h from

which the linear solver takes up 10h (shown

in red, cf. Fig 2a). Fig 2b shows how, ideally,

the run time of the overall application

could benefit from the cluster readiness of

XSAMG: In principle, the pure solution time

(shown in green) gets smaller as more nodes

are employed. In-line with Amdahl’s law, the

asymptotic minimum time required in this

example is 2h.

1A SAMG on 1 node

1b XSAMG exploiting 2, 4 or 8 nodes

2b Multi-node multi-core use of

XSAMG: Ideal total time for increasing

number of nodes

